CTO Revascularization in 2015

Jeffrey W. Moses, MD Professor of Medicine Director, Interventional Cardiac Therapeutics Columbia University Medical Center Director Complex Coronary Interventions St. Francis Hospital, Roslyn, LI

Disclosure Statement of Financial Interest

I, Jeffrey W. Moses, MD am a consultant to BSC ,Abbott,Medtronic (minor)

False Assumptions about Coronary Chronic Total Occlusions

- The CTO is well collateralized and therefore there is minimal impact on quality of life and prognosis
- CTO is a closed vessel and therefore not at risk for/or during ACS/AMI
- CTO outcomes are more benign than non CTO coronary disease

Current Perspectives on Coronary Chronic Total Occlusions

The Canadian Multicenter Chronic Total Occlusions Registry

Paul Fefer, MD,*† Merril L. Knudtson, MD,‡ Asim N. Cheema, MD, PHD,§
P. Diane Galbraith, BN, MSC,‡ Azriel B. Osherov, MD,* Sergey Yalonetsky, MD,*
Sharon Gannot, BS,† Michelle Samuel,* Max Weisbrod,* Daniel Bierstone,* John D. Sparkes, MSC,*
Graham A. Wright, PHD,* Bradlev H. Strauss, MD, PHD*

IBLA UNIVERSITY AL CENTER resbyterian

CARDIUMASCULAR RESEARCH COLUMN DATION A Panies for Insonation

2012;59:991-7) © 2012 by the American College of Cardiology Foundation

National Attempt Rates ACC-NCDR

National Attempt Rate Over Time

ARDHOVASCILAR RESEARCH A Danies for barration

Courtesy J Aaron Grantham and ACC/NCDR

NewYork-Presbyterian

COLUMBIA UNIVERSITY

Clinical Indications Why Open a Chronically Occluded Coronary Artery?

- Symptom control
 - Angina
 - CHF
 - Fatigue
- Improve LV function
 - Regional
 - Global
- Survival
 - Improved tolerance of AMI
 - Complete revascularization
 - Ischemic Risk

Collaterals are Usually not Sufficient to Substantially Reduce Ischemia in CTO

CARDHUNALCULAR RESEARCH A Phone for barration

Modified from Werner GS et al, *European Heart Journal* 2006, courtesy Werner GS

Columbia University Medical Center

Evidence for Quality of Life Benefit

125 pts completed the Seattle Angina Questionnaire (SAQ) before and one month after PCI. 69 procedural success (55%), 56 failures (45%)

Grantham JA. et al, Circulation: QCOR 2010;3:284-90

Impact of Successful CTO-PCI: Angina Long-term angina benefit favors CTO-PCI success

	PCI success PCI failure		Odds Ratio	Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Angioi et al.	10	93	28	108	7.6%	0.34 [0.16, 0.75]	
Aziz et al.	12	377	36	166	9.7%	0.12 [0.06, 0.24]	
Drozd et al.	10	280	12	149	6.3%	0.42 [0.18, 1.00]	
Finci et al.	7	100	37	100	8.2%	0.13 [0.05, 0.31]	
Hoye et al.	71	567	117	304	30.9%	0.23 [0.16, 0.32]	
Nanhoe et al.	41	317	59	163	19.5%	0.26 [0.17, 0.41]	
Noguchi et al.	9	134	26	92	7.0%	0.18 [0.08, 0.41]	
Olivari et al.	7	286	13	83	5.2%	0.14 [0.05, 0.35]	· · · · · · · · · · · · · · · · · · ·
Valenti et al.	7	344	13	142	5.4%	0.21 [0.08, 0.53]	
Warren et al.	3	26	7	18	2.1%	0.20 [0.04, 0.95]	
Total (95% CI)		2524		1325	100.0%	0.22 [0.17, 0.27]	•
Total events	177	0.00505050	348				
Heterogeneity: Tau ² = 0.01; Chi ² = 9.90, df = 9 (P = .36); I ² = 9%					at the second se		
Test for overall effect Z = 13.41 (P < .00001)					0.01	0.1 1 10	
							Favors Success Favors Failure

t J. 2010.

Impact of Successful CTO-PCI: Mortality Long-term survival benefit favors CTO-PCI success

PCI success		PCI failure			Odds Ratio	Cults Ratio	sude Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	1.H. Randon, 95% Cl	
Angioi et al.	3	93	9	108	3.4%	0.37 [0.10, 1.40]		
Aziz et al.	9	377	12	166	6.7%	0.31 [0.13, 0.76]		
Drozd et al.	7	280	5	149	4.3%	0.74 [0.23, 2.37]		
Finci et al.	5	100	3	100	2.9%	1.70 [0.40, 7.32]		
Hoye et al.	37	567	36	304	14.4%	0.52 [0.32, 0.84]		
wanhoe et al.	3	317	7	163	3.2%	0.21 (0.05, 0.83)		
Labriolle et al.	7	127	2	45	2.4%	1.25 [0.25, 6.27]		
Noguchi et al.	7	134	15	92	6.1%	0.28 [0.11, 0.72]		
Olivari et al.	2	286	3	83	1.9%	0.19 [0.03, 1.14]		
Prasad et al.	229	914	101	348	21.6%	0.82 (0.62, 1.08)	-+	
Suero et al.	395	1491	180	514	23.8%	0.67 [0.54, 0.83]	-	
Valenti et al.	17	344	17	142	9.3%	0.38 [0.19, 0.77]		
Warren et al.	0	26	0	18		Not estimable		
Total (95% CI)		5056		2232	100.0%	0.56 [0.43, 0.72]	•	
Total events	721		390				6353	
Heterogeneity Tau*	= 0.06; Ch	*= 18.	74, df = 1	1 (P=	.07); *=	41% -	tt	
Test for overall effec	t Z = 4 39 (P < .0	001)	2010/020	02015/0/-	0.01	0.1 1 10	100
	ne activen/9803						Favors Success Favors Failure	

Columbia University Medical Center

leart J. 2010.

COURAGE Rates of Death or MI by Residual Ischemia

Shaw et al, Circ 2008;117

ରଚ MEDICAL CENTER - NewYork-Presbyterian

COLUMBIA UNIVERSITY

Residual SYNTAX Score in SYNTAX Trial

Farooq Circ 2013;128:141 Kereiakes et al, Rev Cardiovasc Med. 2014;15:24-30

Columbia University Medical Center

Material and Methods

- Retrospective analysis of coronary • angiography performed with regard to procedure details and angiographic completeness of revascularization
- Complete angiographic • revascularization defined as:
 - No angiographically significant stenosis in all vessels with diameter of at least 2mm
 - Significant stenosis defined as: LM and proximal LAD \geq 50% MLD and ≥70% in all other arteries

COLUMBIA UNIVERSITY

Results 12 Months

Variable (%)	Complete revasc (n=222)	Incomplete revasc (n=217)	<i>P</i> value
Myocardial infarction	2,3%	5,5%	0,125
All-cause mortality	10,4%	18,4%	0,01
Death or MI	11,7%	23,5%	0,002

Retrograde Approach

CTO Crossing **Successful strategy**

- NewYork-Presbyterian

NIVERSITY NTER

Reverse CART

Courtesy of Dr. Masahiko Ochiai

Reverse CART

Distal cap access

Reverse CART

Lossy compression - not intended for diagnosis

Advance corsair into antegrade guide Exchange for viper wire

IVUS Guided Identification of the Entry

IVUS Guided Technique for Looking For the Entry

The Stingray[™] CTO Re-Entry System

The StingRay[™] System (Catheter and Guidewire) is designed to accurately target and re-enter the true lumen from a subintimal position.

Unique self-orienting balloon has a <u>flat shape</u> for true lumen targeting

180° opposed and offset

exit ports for selective guidewire re-entry

Compatibility: Coronary: 0.014" Wire

> Columbia University Medical Center

The CrossBoss[™] CTO Crossing

The CrossBoss[™] cathe **Gata eter** stainless steel catheter designed to quickly and safely pass through the CTO to gain access to the distal true lumen or enter subintimal pathways. The catheter is advanced by using rapid bi-directional rotation.

- Multi-wire coiled shaft
- Tracks via FAST Spin Technique
 - Highly torqueable coiled-wire shaft
 - FAST Spin reduces push required to cross CTO
- Atraumatic distal tip advanced across a CTO ahead of the guidewire
- OTW 0.014" guidewire compatible

Atraumatic 1 mm Distal Tip

Hybrid Strategy Treatment Algorithm

Antegrade Paradigm

- 48 year old man with hypertension, hyperlipidemia, known coronary artery disease
 - 3 months prior to admission presented to outside hospital with acute chest pain, STEMI, and underwent thrombus aspiration and PCI to RCA
 - LAD CTO intervention attempted but abandoned due to vessel perforation
 - Continued to have exertional chest pain, so he was referred to Columbia for second opinion

Dual Injection

Antegrade – Crossing the lesion

- Corsair
- Attempted wires: Asahi Gaia 1, 2, 3
- Confianza Pro 12 used to pierce
- Gaia 2 used to cross lesion

Confienza

Corsair Tip In

Gaia 2nd Advancing

Aligning

Crossing

In Distal Vessel

LAD lesion prep

- Gaia exchanged for BMW wire
- Corsair removed with trapping balloon
- Mid-LAD dilated with NC 2.5 and 3.0 x 8mm balloons

Final picture

Typical Retrograde Wire Sequence

- 78 year old man with hypertension, prior tobacco use, prostate cancer, carotid stenosis and coronary artery disease
 - 1987: Cardiac catheterization via brachial approach in with PTCA to unknown vessel complicated by endocarditis
 - 2014: Presented with one month of worsening exertional chest pain to outside hospital
 - Echocardiogram: normal systolic function, no wall motion or valvular abnormalities
 - Coronary angiogram: complex multi-vessel disease including chronic total occlusion of the PDA for which he was transferred to Columbia-Presbyterian

Initial dual injection

8F bright-tip sheaths8F JR45F diagnostic JL4

Left coronary intervention

- 7F FL 4.0 Guide for antegrade left coronary intervention
- BMW, Prowater wires
- Angiosculpt 3 x 10mm in left main 18atm
- NC 3 x 12mm balloon in mid LAD

Left coronary intervention

- Premier 3 x 12mm stent in LAD
- Premier 4 x 8mm stent in LM
- NC 4.5 x 8mm in LM stent post-dilation
- IVUS
- NC 4 x 8mm post-dilate

Retrograde RCA CTO Intervention

- 150cm Corsair
- Prowater used to access septal collaterals
- Sion wire for collateral surfing, successfully accessed RPDA

Setup for reverse CART

Miracle 6 in corsair antegrade
Pilot 200 retrograde

Retrograde RCA CTO Intervention

- 2.5 x 30 balloon in distal RCA
- 8F Guideliner entered with Confienza Pro 12 and exchanged for Viper wire

RCA stents

- Resolute 2.5 x 30mm stent in distal RCA
- Resolute 3 x 38mm stent in mid RCA
- Resolute 3.5 x 22mm stent in proximal RCA

Final pictures

Antegrade Dissection Reentry

J-CTO Score Sheet

Tapered	Blunt	E de la companya de la
LLL	Entry with any tapered to or dimple indicating direction of true lumen categorized as "tapered	P □ Tapered (0) is □ Blunt (1) ".
		point
Calcification	Regardless of severity, 1 point is assigned if any evident calcification is detected within the CTO segment,	Calcification Absence (0) Presence (1)
		point
Bending >45degre	es Market State Market State	Bending>45° Absence (0) Presence (1) t. point
Occlusion length		
CTO segment	Using good collateral images, try to measure "true" distance of occulusion, which tends to be shorter than the first impression.	Occl.Length □ <20mm (0) □ ≥20mm (1)
		point
Re-try lesion Is this Re-try (2 nd attempt)) lesion? (previously attempted but faile	Re-try lesion □ No (0) □ Yes (1)

Category of difficulty (total point)

□ easy (0) □ Intermediate (1)

 \Box difficult (2) \Box very difficult (\geq 3)

Morino Y et al. JACC Interv, 2011;4: 213-221

Columbia University Medical Center

Predicting Success: The J-CTO Score

Morino Y et al. JACC Interv, 2011;4:213-221

COLUMBIA UNIVERSITY MEDICAL CENTER

Revascularization for CTO Conclusions

- CTOs negatively impact our patients quality of life as well as prognosis
- Patients with symptoms, multivessel CAD, and moderate to large CTO-mediated ischemic burden derive clinical benefit
- We under treat these patients
- Great opportunity exists to benefit public health by expanding CTO revascularization

